

MOTIVATION & OBJECTIVE

BIO-BASED MALEIC ACID PRODUCTION

Maleic acid/anhydride:

- Available only from fossil based feedstocks, butane or benzene
- Applications: polymers (incl. biodegradable), lubricants, plasticizers, bioaromatics
- Electrochemical production can offer "green" conversion based on renewable feedstock and energy

MALEIC ACID PRODUCTION VIA ELECTROLYSIS

REACTION MECHANISMS

(-) $8H^+ + 8e \rightarrow 4H_2$

(+) FF $(C_5H_4O_2) + 4H_2O \rightarrow MA (C_4H_4O_4) + CO_2 + 8H^+$ Overall: FF $(C_5H_4O_2) + 4H_2O \rightarrow MA (C_4H_4O_4) + CO_2 + 4H_2$

S. R. Kubota, et al, ACS Sustainable Chem. Eng.2018689596-9600

N Alonso-Fagundez et al., (2014) RSC Advances, 4 (98):54960-54972, 2014

SCALE UP APPROACH

Literature study and expert opinion

Downstream processing

Techno-economic evaluation

Electrochemical systems

Design of electrochemical process and development
TRL 1-2 to TRL 6

System integration, pilot construction & demonstration

1. Reaction and catalyst development

2. Reactor and process development

3. Demonstration of integrated process

 $1000 \text{ cm}^2 - 25-50 \text{ g/h}$

CATALYST SELECTION

CV MEASUREMENTS

-) Pt & PbO₂ tested, PbO₂ x20 higher current density, cheaper non-noble catalyst
- > Furfural and furoic acid readily oxidized at 2.1 V vs RHE
- CVs indicate stability of maleic acid on PbO₂

-) PbO₂, cheap industrially used electrode material
- Preparation by potential cycling, 1.1 2.0V, till stable CV

$$PbO\cdot(OH)_2+H_2O\rightarrow PbO\cdot(OH)_2...(OH^{\bullet})+H^{+}+e^{-}, (1)$$

$$PbO\cdot(OH)_2...(OH^{\bullet}) \rightarrow PbO\cdot(OH)_2 + O + H^{+} + e^{-},$$
 (2)

$$2 O \rightarrow O_2$$
. (3)

$$2SO_4^{2-} \rightarrow S_2O_8^{2-} + 2 e- \tag{4}$$

ELECTROLYSIS OPTIMIZATION

Electrolysis 50 mM Furfural on PbO₂: ~70% yield MA + 5HFO, FE~ 80%

) Feedstock: Maleic acid formed by electrolysis of furfural, furoic acid, 5HFO

Electrode material: DSA, BDD, Pb alloys, PbO₂. Latter shows best activity.

Residence time: Longer residence time, lower yield

Temperature: Increase of temperature, lower efficiency, higher product

degradation, higher current density (20-60 mA/cm²)

Electrolysis conditions: Oxidation of 50 mM FF , fixed potential (1.85 V vs SCE) on a PbO_2 (10 cm2) anode as WE, Pt CE and SCE as RE in a 1M H2SO4, 7 hours.

REACTOR SCALE UP $10-100 \text{ CM}^2 \rightarrow 1000 \text{ CM}^2$

-) Reactor development
 - Performance and materials requirements → specifications
 - Reactor modelling
 - Construction of a flexible reactor (flexible interelectrode distance, electrode type)
 - Optimization of reactor performance (CD, FE, Cell voltage)
 - Flow and reactor configuration
 - Electrolysis mode, feed dosing

MALEIC ACID PRODUCTION ELECTROLYSIS PERFORMANCE

-) 99% FF conversion
-) 80% combined yield of HFO and MA
-) Selectivity: HFO ~60%, MA ~30%
- **)** Overall F.E. ~70%
- Main losses of FF within 1.5 hrs, then stable
-) Longer electrolysis is required!
-) Main challenges:
 -) Selectivity & FE
 - Stability of Pb electrodes (~0.005 mg/cm²*hr → ~0.4 kg/m²*year)
 -) Reactant crossover
 -) Gas management

Time (h)

Time (h)

MALEIC ACID SEPARATION

MA OBTAINED IN A PILOT SCALE 5L CRYSTALLIZER

- MA separation from reaction mixture: pre-concentration followed by cooling crystallization, filtration, washing and drying
-) Crystallization step requires concentrated MA in the acidic electrolyte
- Separation yield ~85%, purity >95%
-) Slight coloration observed due to furfural degradation products. Sulfuric acid content \sim 0.5% in final sample and 1% 5HFO.

TECHNO-ECONOMIC ANALYSIS FURFURAL TO MALEIC ANHYDRIDE

ELECTROLYSER

-) MA production costs: 1.3 2.5 Euro/kg
-) Represent 30-50% of total costs (depends on case)
- H₂ cogeneration in Cathode: associated H₂ sales discount
 - Drives down total Electrolyser Costs

BASE CASE VS. INTEGRATED CASE

-) Base Case:
 -) FF is purchased in pure form and diluted: higher FF cost (40% of total costs)
 - DSP: Pre-concentration & dehydration vs extraction & dehydration
 - Non-optimised separation: lab-scale exp. Results to model process (25-33% of total costs)
-) Integrated case:
 -) FF can be purchased in a 10-15%wt. aq. Solution: <u>-50% FF costs</u> (30% total costs)
 - Integrated separation process: expected <u>50% cost reduction for both cases</u> (20-25% of total costs)

 H₂ price 1,50

O₂ price

El. Cost

FE

CD

0.05

0.05

70

80

300

POSITIVE ECONOMIC BALANCE FOR INTEGRATED CASE

- Valid for both separation Case 1 & 2
-) MAnh price can range from 1,25 1,50 €/kg: varies with oil price

12 September 2022 | Electrochemical process development for maleic acid production

SUMMARY

- > Feasible electrochemical production of bio-based maleic acid from furfural
- Scaled up from few cm² to 1000 cm² continuous flow electrolysis unit
 - MA yield ~30%, 5HFO yield ~50% (combined yield ~80%), overall F.E. ~70%
 - Next, electrolysis with porous electrodes and stacked cell testing of 1 m²
- ➤ MA Separation yield ~85, purity >95%
- Potentially positive business case, production costs 1.3 2.5 Euro/kg MA (market price ~ 1.5 Euro/kg)

1. Reaction and catalyst development

2. Reactor and process development

 $1-100 \text{ cm}^2 - 1-2 \text{ g/h}$

1000 cm² - 25-50 g/h

VOLTA Specialized companies POWER PLATFORM

TNO

Sustainable

Research institutes

UNIVERSITYOF HOHENHEIM

AVABIOCHEM

avantium

Roman Latsuzbaia, roman.latsuzbaia@tno.nl

www.voltachem.com

